skip to main content


Search for: All records

Creators/Authors contains: "Sarkar, Sourav"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Aryl alcohol‐type or phenolic fluorophores offer diverse opportunities for developing bioimaging agents and fluorescence probes. Due to the inherently acidic hydroxyl functionality, phenolic fluorophores provide pH‐dependent emission signals. Therefore, except for developing pH probes, the pH‐dependent nature of phenolic fluorophores should be considered in bioimaging applications but has been neglected. Here we show that a simple structural remedy converts conventional phenolic fluorophores into pH‐resistant derivatives, which also offer “medium‐resistant” emission properties. The structural modification involves a single‐step introduction of a hydrogen‐bonding acceptor such as morpholine nearby the phenolic hydroxyl group, which also leads to emission bathochromic shift, increased Stokes shift, enhanced photo‐stability and stronger emission for several dyes. The strategy greatly expands the current fluorophores’ repertoire for reliable bioimaging applications, as demonstrated here with ratiometric imaging of cells and tissues.

     
    more » « less
  2. Abstract

    Aryl alcohol‐type or phenolic fluorophores offer diverse opportunities for developing bioimaging agents and fluorescence probes. Due to the inherently acidic hydroxyl functionality, phenolic fluorophores provide pH‐dependent emission signals. Therefore, except for developing pH probes, the pH‐dependent nature of phenolic fluorophores should be considered in bioimaging applications but has been neglected. Here we show that a simple structural remedy converts conventional phenolic fluorophores into pH‐resistant derivatives, which also offer “medium‐resistant” emission properties. The structural modification involves a single‐step introduction of a hydrogen‐bonding acceptor such as morpholine nearby the phenolic hydroxyl group, which also leads to emission bathochromic shift, increased Stokes shift, enhanced photo‐stability and stronger emission for several dyes. The strategy greatly expands the current fluorophores’ repertoire for reliable bioimaging applications, as demonstrated here with ratiometric imaging of cells and tissues.

     
    more » « less
  3. null (Ed.)
    In this article, there are 18 sections discussing various current topics in the field of relativistic heavy-ion collisions and related phenomena, which will serve as a snapshot of the current state of the art. Section 1 reviews experimental results of some recent light-flavored particle production data from ALICE collaboration. Other sections are mostly theoretical in nature. Very strong but transient magnetic field created in relativistic heavy-ion collisions could have important observational consequences. This has generated a lot of theoretical activity in the last decade. Sections 2, 7, 9, 10 and 11 deal with the effects of the magnetic field on the properties of the QCD matter. More specifically, Sec. 2 discusses mass of [Formula: see text] in the linear sigma model coupled to quarks at zero temperature. In Sec. 7, one-loop calculation of the anisotropic pressure are discussed in the presence of strong magnetic field. In Sec. 9, chiral transition and chiral susceptibility in the NJL model is discussed for a chirally imbalanced plasma in the presence of magnetic field using a Wigner function approach. Sections 10 discusses electrical conductivity and Hall conductivity of hot and dense hadron gas within Boltzmann approach and Sec. 11 deals with electrical resistivity of quark matter in presence of magnetic field. There are several unanswered questions about the QCD phase diagram. Sections 3, 11 and 18 discuss various aspects of the QCD phase diagram and phase transitions. Recent years have witnessed interesting developments in foundational aspects of hydrodynamics and their application to heavy-ion collisions. Sections 12 and 15–17 of this article probe some aspects of this exciting field. In Sec. 12, analytical solutions of viscous Landau hydrodynamics in 1+1D are discussed. Section 15 deals with derivation of hydrodynamics from effective covariant kinetic theory. Sections 16 and 17 discuss hydrodynamics with spin and analytical hydrodynamic attractors, respectively. Transport coefficients together with their temperature- and density-dependence are essential inputs in hydrodynamical calculations. Sections 5, 8 and 14 deal with calculation/estimation of various transport coefficients (shear and bulk viscosity, thermal conductivity, relaxation times, etc.) of quark matter and hadronic matter. Sections 4, 6 and 13 deal with interesting new developments in the field. Section 4 discusses color dipole gluon distribution function at small transverse momentum in the form of a series of Bells polynomials. Section 6 discusses the properties of Higgs boson in the quark–gluon plasma using Higgs–quark interaction and calculate the Higgs decays into quark and anti-quark, which shows a dominant on-shell contribution in the bottom-quark channel. Section 13 discusses modification of coalescence model to incorporate viscous corrections and application of this model to study hadron production from a dissipative quark–gluon plasma. 
    more » « less
  4. Free, publicly-accessible full text available September 22, 2024
  5. Free, publicly-accessible full text available July 25, 2024
  6. Free, publicly-accessible full text available July 25, 2024
  7. The IceCube Neutrino Observatory at the South Pole has measured the diffuse astrophysical neutrino flux up to ~PeV energies and is starting to identify first point source candidates. The next generation facility, IceCube-Gen2, aims at extending the accessible energy range to EeV in order to measure the continuation of the astrophysical spectrum, to identify neutrino sources, and to search for a cosmogenic neutrino flux. As part of IceCube-Gen2, a radio array is foreseen that is sensitive to detect Askaryan emission of neutrinos beyond ~30 PeV. Surface and deep antenna stations have different benefits in terms of effective area, resolution, and the capability to reject backgrounds from cosmic-ray air showers and may be combined to reach the best sensitivity. The optimal detector configuration is still to be identified. This contribution presents the full-array simulation efforts for a combination of deep and surface antennas, and compares different design options with respect to their sensitivity to fulfill the science goals of IceCube-Gen2. 
    more » « less